Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field

نویسندگان

  • Sarveshanand
  • A K Singh
چکیده

In this paper, the steady two-dimensional hydromagnetic free convective flow of an incompressible viscous and electrically conducting fluid between two parallel vertical porous plates has been considered. The effect of induced magnetic field arising due to the motion of an electrically conducting fluid is taken into account. The governing equations of the motion are a set of simultaneous ordinary differential equations and their analytical solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expression for the induced current density has been also obtained. The effects of various non-dimensional parameters on the velocity profile, the induced magnetic field profile, the temperature profile and the induced current density profile have been shown in the graphs. It is found that the effect of suction parameter is to decrease the velocity field and induced current density while it has increasing effect on the induced magnetic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium

The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...

متن کامل

Analytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate

The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...

متن کامل

Unsteady free convection flow between two vertical plates with variable temperature and mass diffusion

The unsteady free convection flow between two long vertical parallel plates withvariable temperature and mass diffusion in the presence of the thermal radiation hasbeen presented. The governing dimensionless coupled linear partial differentialequations on the flow are solved by using the Laplace transform technique. TheExact solutions have been obtained for the fluid velocity, temperature and t...

متن کامل

Thermal Convection of Rotating Micropolar Fluid in Hydromagnetics Saturating A Porous Medium

This paper deals with the theoretical investigation of the thermal instability of a thin layer of electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained between two free boundaries using a linear stability analysis theory, and normal mode analysi...

متن کامل

Unsteady free convection oscillatory couette flow through a variable porous medium with concentration profile

In this paper we have studied the effect of free convection on the heat transfer and flow through variable porous medium which is bounded by two vertical parallel porous plates. In this study it is assume that free stream velocity oscillates with time about a constant mean. Periodic temperature is considered in the moving plate. Effect of different parameters on mean flow velocity, Transient ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015